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The distribution of vibration over "nite structures excited by a force is considered. To
describe the vibration distribution, a quantity, called motion transmissibility, is introduced
which is de"ned as the ratio of the velocity of the structure at an arbitrary point to that at the
excitation location. This quantity can be of substantial assistance to achieve reduction in the
modelling of built-up structures. It is found that for rods, beams and shells, the motion
transmissibility can be estimated by using the corresponding semi-in"nite structure. For
plates, the motion transmissibility can be estimated by considering the corresponding
quarter-in"nite structure.

( 2000 Academic Press
1. INTRODUCTION

With a view towards the development of a simple method for estimating the vibration of
built-up structures, the information required for primary and secondary substructures has
been studied. Thereby, primary and secondary structures refer to substructures which
strongly and weakly in#uence the dynamic behaviour of the assembly respectively. It is
noticed [1] that if the structure is composed of substructures between which dynamic
mismatch exists, the establishment of the system description revealing the salient physics
requires di!erent dynamic characteristics for the di!erent classes of substructures. For some
substructures mobility is required, while for others, the vibration distribution, normalized
by the vibration at the excitation point, is necessary. Herein such a normalized vibration
distribution is termed motion transmissibility and a notation ¹

qp
is used,
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(u)"v
q
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p
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qp
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pp
(u) (1)

where u is angular frequency, v
q

and v
p

are the velocities at an arbitrary point q and the
excitation point p respectively. >

qp
is the transfer mobility from point p to q, and >

pp
the

point mobility (a list of symbols can be found in Appendix C).
From linear system theory the transfer function of a system, represented here by the

mobility, is characterized by both poles and zeros (see, for example, reference [2]), whereas
from the de"nition equation (1) the motion transmissibility by the zeros only. It should,
therefore, be possible to estimate motion transmissibility by using only a part of the
structural detail or alternatively from a reduced model of the structure. A test of this idea on
rods reveals that the motion transmissibility can indeed be exactly determined from the
vibration of the corresponding semi-in"nite rod. Therefore, once this has been
demonstrated to be the case also for other systems, such as beams, plates and shells, the
analysis of the built-up structures under consideration can be facilitated by employing
0022-460X/00/470271#23 $35.00/0 ( 2000 Academic Press
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markedly reduced and simpli"ed models for those substructures where information of
vibration distribution su$ce for the description of the dynamic behaviour of a built-up
system.

2. ONE-DIMENSIONAL SYSTEMS

2.1. RODS

The motion of rods under axial excitation belongs to the class of one-dimensional wave
motion. With a force excitation at x"x

p
, (see Figure 1), the velocity of the rod, upon

assuming free}free boundary conditions, is given by [3]
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where >
c

is the characteristic mobility of the rod, and k"uJo/E is the wavenumber.
Accordingly, the motion transmissibility of the rod is found to be
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If two semi-in"nite rods are considered, one being in"nite in the positive x direction with its
free end at x"0 and the other in the negative x direction with its free end at x"¸, as
shown in Figures 2(a) and 2(b) respectively. The velocity of the semi-in"nite rod in case (a) is
expressed by the sum of the direct wave and the re#ection from the left end as
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and that in case (b) as
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(5)
Figure 1. A rod excited by a force.

Figure 2. Two semi-in"nite rods: (a) in"nite in the positive x direction; (b) in"nite in the negative x direction.
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From equations (4) and (5), the motion transmissibilities for the two semi-in"nite rods are
obtained as
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and
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Upon comparing ¹ (a)
qp

, ¹ (b)
qp

with ¹
qp

it is observed that
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which states that the motion transmissibility of "nite, elementary one-dimensional systems
can be calculated from the corresponding semi-in"nite system. Thereby, the term
elementary is used to distinguish the present system from such which support both
propagating and evanescent waves, such as beams.

It should be noted that although equation (8) is derived for free}free boundary
conditions, it is, by means of the image source method [4, 5], readily demonstrated to hold
also for any other boundary condition.

The reason why ¹ (a)
qp

and ¹ (b)
qp

are applicable in di!erent regions is found by considering
the standing and travelling wave "elds. With the excitation applied at x

p
, the direct wave

propagates to left in the region x(x
p

and to right in the region x'x
p
. The direct wave,

combined with the re#ection from the left end, forms a standing wave "eld in the region
x(x

p
whereas a travelling wave is obtained in the region x'x

p
. Thus, ¹ (a)

qp
is not

applicable for the case where x
q
'x

p
, and ¹(b)

qp
is not applicable for the case where x

q
(x

p
.

2.2. BEAMS IN FLEXURE

Beams di!er from the elementary one-dimensional system in which near "elds can arise at
the excitation and the two ends. Even if, as in the situation with simple supports at the
boundaries, the near "elds vanish in the vicinity of the ends, that at the excitation generally
remains. This may introduce a complication in estimating the motion transmissibility from
the corresponding semi-in"nite structure as suggested in section 2.1 and the applicability of
such an estimation must therefore be investigated.

Figure 3(a) illustrates the constituent waves for the vibration of a "nite beam, transversely
excited by a force at x

p
. For positions where x

q
(x

p
, the motion transmissibility of the
Figure 3. Illustration of the near and travelling wave "elds in beams.
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"nite length beam is to be compared with that of the corresponding semi-in"nite beam,
in"nite in positive x direction, as shown in Figure 3(b). Where x

q
'x

p
, the comparison

should be made with the corresponding semi-in"nite beam extending in the negative
x direction instead.

For a harmonic excitation, two di!erent types of direct waves are generated; the
direct travelling wave v=

f
and the direct evanescent wave v=

n
. As v=

f
impinges on the two

ends, four re#ections generally result, two travelling and two evanescent re#ections.
These four re#ections are then repeatedly re#ected, resulting in an in"nite sequence of
re#ections. The total "eld which is initially associated with v=

f
can be denoted by vI.

Similarly, as v=
n

impinges on the two ends, four re#ections result, two travelling and two
evanescent re#ections. Again, these four re#ections are repeatedly re#ected at the ends,
resulting in another in"nite set of re#ections. A notation vII may be used to denote the "eld
which stems from v=

n
. By the superposition principle, the total wave "eld v in the beam is

given by

v"vI#vII. (9)

In many applications, the beam considered vibrates in a frequency range above its "rst few
eigenfrequencies. This occurs when the beam is several times longer than the wavelength,
making the evanescent wave from one end negligibly small as it reaches the opposite end.
Hence, those multiple re#ections due to the evanescent part from each end can be neglected.
A further simpli"cation can be obtained by restricting the location of the excitation to be
more than half a wavelength away from both ends, making those re#ections associated with
v=
n

negligible and vII being approximated by vII+v=
n

, rendering only a small contribution to
the total wave "eld, and thus, vII can be neglected. With these considerations, the expression
for v can be simpli"ed as (see the wave approach for beams in reference [4])

v"CL
ff

(v=
f
#vL

ff
#vL

nf
), x(x

p
, (10)

where vL
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are the left-hand travelling and evanescent re#ections due to v=
f

incidence,
respectively, and CL
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Herein, rL
ff

, rR
ff

are the re#ection coe$cients of the left and right ends respectively. By the
same token, the wave "eld of the corresponding semi-in"nite beam of in"nite extent in the
positive x direction can be written as
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f
#vL

ff
#vL

nf
. (12)

Upon comparing equations (12) and (10) it is seen that
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and accordingly
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In the same manner, the relation for positions where x
q
'x

p
can be obtained from the

comparison of the "nite beam with the corresponding beam of in"nite extent in negative
x direction. Accordingly, it can be concluded that if the beam is more than a wavelength
long and the excitation point is at least half a wavelength away from each end, the motion
transmissibility of the "nite length beam can be estimated from the corresponding semi-
in"nite beam.

For the case where the excitation point is within half a wavelength of any of the ends, the
wave "eld associated with the direct evanescent wave cannot be neglected. Owing to the
di$culty of analytically describing such a case, a numerical approach will be used in section
5 for the detailed investigation.

3. TWO-DIMENSIONAL SYSTEMS

Obviously, it would be useful if the method of estimating the motion transmissibility for
one-dimensional systems also were applicable in two-dimensional cases. In this pursuit
a simply supported plate, excited by a point force F, is considered; see Figure 4. Other,
inhomogeneous boundary conditions will be investigated numerically in section 5.

The transverse displacement of such a plate can be expressed by a series expansion [6] as
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where k
x,m

"mn/¸
x
, k

y,n
"nn/¸

y
and k is the #exural wavenumber of the plate. D is the

bending sti!ness of the plate and A"¸
x
¸
y

is the area of the plate. It is noted that in
equation (15), the indices m and n run from !R to #R, see also reference [3].

To evaluate the displacement w in the region x)x
p
, y)y

p
, two approximations are

introduced. First, the whole frequency range is divided into a number of narrow bands at
a span equal to the modal overlap Du. For the lth band, the modes inside are grouped with
the use of an approximation k

mn
+k

l
, k

l
being the mean of k

mn
in that band. Second, it is

assumed that the number of modes in each band is su$ciently large so that the mode
grouping can be approximately evaluated by an integral. This means that the double series
sum in equation (15) is reduced to a single sum over k

l
, l"1, 2, 3,2. The major e!ect of
Figure 4. A rectangular plate excited by a point force at (x
p
, y

p
).
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employing the two approximations is that the representation of the dynamic characteristics
of the plate in the frequency domain is numerically smoothed. For the situation where the
two approximations are appropriate, this &&smoothing e!ect'' is restricted locally and the
global characteristics will remain una!ected.

Upon evaluating the single-series sum, by using a contour integral [7}9], the
displacement of the plate is approximately obtained as (see details in Appendices A and B)
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see also reference [10]. Therefore, the motion transmissibility of the plate is obtained from
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In equation (17), S
0

is the direct wave radiated from the source. S
1
, S

2
, S

3
can be interpreted

as the waves radiated from the three image sources located at (!x
p
, y

p
), (x

p
, !y

p
) and

(!x
p
, !y

p
) respectively [3, 11]. It is realized that the wave "eld represented by the sum

(S
0
#S

1
#S

2
#S

3
) is the same as that in the corresponding quarter-in"nite plate

extending to in"nity in positive x and y directions; see Figure 5. Hence, equation (18)
suggests that the motion transmissibility of the simply supported plate can be estimated
from its corresponding quarter-in"nite plate.

It should be noted that the above result can easily be extended to arbitrary response
points on the plate. For a given excitation position, the plate can be divided into four areas,
as shown in Figure 6.
Figure 5. Quarter-in"nite plate and its three image sources.



Figure 6. Subdivision of the plate in four quadrants with respect to excitation position.

Figure 7. Choice of the corresponding quarter-in"nite plate according to the location of response point (x
q
, y

q
).
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If the response point q is located in area I, then the appropriate corresponding
quarter-in"nite plate is obtained by displacing the upper and right edges to in"nity, see
Figure 7(a). With the response point q in area II, the left and upper edges are displaced, etc.
Figures 7(b), 7(c) and 7(d) show the situations where the response points are in the areas II,
III and IV respectively.
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Owing to the two approximations involved, the applicability of the method described
above will be subject to conditions. As is well known, the "rst approximation is appropriate
for the situation where the ratio of the modal overlap to the central frequency of the small
band is much less than unity, i.e., Du/u"g@1. This condition can be generally satis"ed for
ordinary material properties and if the plate is not submerged in a dense medium. The
second approximation is obviously appropriate when, in agreement with, for example,
reference [3], the modal overlap Du is much larger than the average of the frequency
interval between modes du.

4. SHELLS

The shell motion involves three components, longitudinal, torsional and #exural. With
respect to the zero order circumferential mode, n"0(breathing mode), only the "rst two
components are involved whereas a higher order circumferential mode, n*1, is associated
with all three.

When the shell is subject to uniform axial or circumferential excitation only, the
breathing mode dominates the motion so that the shell behaves like either a rod or a shaft.
Hence, the motion transmissibility can be estimated by using the corresponding
semi-in"nite shell according to the study of elementary one-dimensional systems.

In the absence of the axial and circumferential excitation, however, the breathing mode
can be ignored [4] and the transverse displacement of the shell is predominant and can be
expressed by a series expansion [12}14]
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, q"1, 2, 3, 4, represent four di!erent wavenumbers for nth
circumferential mode and, C$

q,n
, q"1, 2, 3, 4 are constant coe$cients which are

determined by the boundary conditions. By following FluK gge's shell theory [13], the real
and imaginary parts of the wavenumbers are plotted versus frequency in Figures 8 for
a group of circumferential modes. From these graphs, the following observations can be
made.

Well below the ring frequency u
ring

, k
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, k
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, k
3,n
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are all complex, indicating
that all waves in the shell decay exponentially with distance. Especially, the large
imaginary parts of k
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k
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waves diminish quickly and can be neglected. Furthermore, it is seen from
Figures 8(c) and 8(d) that the imaginary parts of k

3,n
and k

4,n
increase rapidly with order of

the circumferential mode n, suggesting that the associated waves can also be neglected for
higher order, n*2. Hence, below u

ring
, the motion of the shell is dominated by k

3,n/1
and

k
4,n/1

waves. Moreover, Figure 8(c) shows that below u
ring

the k
3,n/1

wave is not
a propagating wave but evanescent. With the argument employed in conjunction with
beams, the k

3,n/1
wave can be neglected for not too short cylinders. Accordingly the

transverse displacement of the shell can be approximated in terms of the k
4,n/1

wave as
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Figure 8. Non-dimensional wavenumber versus non-dimensional frequency u/u
ring

: (a) k
1,n

R; (b) k
2,n

R;
(c) k

3,n
R; (d) k

4,n
R.
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Figure 8. Continued.

280 J. LIANG AND B. A. T. PETERSSON



VIBRATION DISTRIBUTION FOR STRUCTURES 281
Since equation (21) is of the same kind as that of the elementary one-dimensional system
with respect to the axial variable x, it follows from the result for rods that, below u

ring
, it is

applicable to estimate the motion transmissibility of the shell using the corresponding semi-
in"nite shell.

Far above u
ring

, it is seen that k
1,n

is purely imaginary, representing an evanescent wave,
whereas k

2,n
, k

3,n
and k

4,n
are purely real, representing three propagating waves.

Furthermore, it is seen that the real parts of k
2,n

and k
3,n

tend to k
L

and k
T
*the

wavenumbers of longitudinal and torsional waves, respectively, and the real part of
k
4,n

tends to k
f
*the wavenumber of a plate having a thickness equal to the wall thickness

of the shell. In the absence of axial and circumferential excitations, k
2,n

and k
3,n

waves will
be insigni"cant and can be neglected. Thus, the transverse displacement of the shell is
approximately written in the form

w (x, h)+A(h)e~+kfx#B (h)e`+kf(x~L) for u'u
ring

. (22)

Again, the form of equation (22) is identical to that of a rod with respect to an axial
variable x such that the conclusion drawn for rods will apply and above u

ring
the motion

transmissibility of the shell can be estimated by using the corresponding semi-in"nite shell.
Near u

ring
, it is seen that both the real and imaginary parts of k

1,n
, k

2,n
, k

3,n
and

k
4,n

exhibit steep drops in magnitude at di!erent frequencies, implying that all wave types
must be taken into account. Owing to the di$culty in examining this region analytically,
a numerical investigation was conducted and is described in the next section.

5. COMPUTATIONAL INVESTIGATION
5.1. BEAMS

The motion transmissibility for a free}free steel beam (length: 1 m, width: 6 mm,
thickness: 50 mm) has been calculated to corroborate the applicability of estimating the
motion transmissibility of beams by considering the corresponding semi-in"nite beam in
the presence of near "elds. The calculation is based on Euler}Bernoulli beam theory [4].
The beam is subjected to force excitation at one end. This makes the two near "elds in the
vicinity of the excitation and the end coincident, achieving maximum contribution from the
evanescent waves to the "eld. In the calculation, the loss factor is taken to be g"0)003. In
Figure 9 are shown the estimated motion transmissibilities ¹esti together with the complete
one ¹ complete. Above k¸"1, it is seen that ¹esti matches the tendency and major variation
of ¹complete with Helmholtz number, including the case that the response point is located at
the other end of the beam. The major di!erences observed are in peak and trough
amplitudes. Below k¸"1, ¹esti is seen to be invalid. The calculation was also carried out
for the same beam but for an increased loss factor of g"0.04. The results are presented in
Figure 10. At this level of damping, it is seen that the peak and trough di!erences in the
range above k¸"1 are greatly reduced. Therefore, the method appears applicable for
Helmholtz numbers above unity and improves as the damping increases.

5.2. PLATES

A simply supported square steel plate (side length: 2 m, thickness 2 mm) is considered to
corroborate the method for two-dimensional systems and to establish limits of applicability.



Figure 9. Motion transmissibility of a free}free beam, g"0)003: (**), ¹esti; () ) ) ) ) )), ¹ complete.

Figure 10. Motion transmissibility of a free}free beam, g"0)04: (**), ¹esti; () ) ) ) ) )), ¹ complete.
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Plotted in Figure 11 is the estimated motion transmissibility ¹esti as well as the complete
one ¹complete, calculated from a modal expansion with 3600 modes (m, n"1,2,2,60), used
to ensure stable convergence. In the calculation, the loss factor is taken to be g"0)08 to
ensure that the condition DuAdu is satis"ed over a wide frequency range. Position 0 in the



Figure 11. Motion transmissibility of a simply supported plate, g"0)08: () ) ) ) ) ), ¹esti; () ) ) ) ) )), ¹complete.

VIBRATION DISTRIBUTION FOR STRUCTURES 283
graph is that of the excitation. For k¸
x
*1, it is seen that ¹esti reveals the trend and

captures the major variation with Helmholtz number. The major di!erence is again found
in peak and trough magnitudes. When k¸

x
(1, the ¹esti is inapplicable.

In order to clarify whether the above estimation method is applicable also for
inhomogenous boundary conditions, the motion transmissibility of the same plate was
re-calculated for free}free boundary conditions, where ¹complete is calculated from a modal
expansion including 334 modes. Lemke's results summarized in reference [6] are used for
the six lowest eigenfrequencies and eigenfunctions. The higher order modes are found by
using Warbuton's formula [15]. ¹esti is obtained from that of a simply supported
quarter-in"nite plate plus a correction term which accounts for free boundary conditions
[16]. It is seen from the graph in Figure 12 that also for these boundary conditions
¹esti reveals the trend and captures the major variation with Helmholtz number, including
the cases where the response point is near an edge or in a corner.

To examine the in#uence of damping on the applicability of ¹esti, the motion
transmissibility was calculated for four di!erent loss factors, g"0)003, 0)012, 0)04, 0)08,
under simply supported boundary conditions. The results are compiled in Figure 13. For
a small loss factor, g"0)003, it is seen that ¹esti fails to give a useful estimation. As g is
increased, the di!erence between ¹esti and ¹complete decreases and with a loss factor,
g"0)04, ¹esti can give a reasonable estimation. Since Du"gu, the results thus highlight
the necessity to satisfy the criterion DuAdu.

In the investigation so far, the e!ect of the aspect ratio of the plate has not been taken into
account. For rectangular plates, k

x,m
has a di!erent interval than k

y,n
. Consequently, the

mode grouping in the ring-shaped wavenumber bands is performed over di!erent ranges of
x and y mode indices. This di!erence is ignored in the integral approximation. To examine
its in#uence, the simply supported plate is given four di!erent aspect ratios. In the
calculations, the area and thickness of the plate are held constant. This is necessary to retain
the same modal density in all cases. The loss factor is again taken to be g"0)08 to satisfy
the modal overlap condition over a wide range. The excitation is applied at x

0
"0)75¸

x
,



Figure 12. Motion transmissibility of a free}free plate, g"0)08: (**), ¹esti; () ) ) ) ) )), ¹ complete.

Figure 13. Motion transmissibility of a plate for four di!erent loss factors: () ) ) ) )), ¹esti; () ) ) ) ) )), ¹ complete .
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y
0
"0)6¸

y
, and the response point is located at x

1
"0)3¸

x
, y

1
"0)2¸

y
. The results are

plotted in Figure 14 versus k¸
c
, where ¸

c
"J¸

x
¸
y

is the characteristic dimension of the
plate. Below ¸

y
/¸

x
"0)7, it is seen that the in#uence of the aspect ratio is marked, whereas

above it is negligible. It seems, therefore, appropriate to state that the method is most
suitable for nearly square plates.



Figure 14. In#uence of the aspect ratio of plate: (**), ¹esti; () ) ) ) ) )), ¹ complete .

Figure 15. Motion transmissibility of a shell, h"0: (**), ¹esti; () ) ) ) ) )), ¹ complete .
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5.3. CYLINDRICAL SHELLS

To test the method for estimating the motion transmissibility with respect to shells,
a free}free cylindrical shell is considered. Shown in Figure 15 and 16 are the plots of
estimated motion transmissibility ¹esti established from the corresponding semi-in"nite
shell and the complete one ¹complete, calculated by using a wave approach [4, 17] and



Figure 16. Motion transmissibility of a shell for di!erent circumferential angle h: (**), ¹esti; () ) ) ) ) )), ¹complete.

Figure 17. In#uence of damping: (**), by semi-in"nite shell; () ) ) ) ) )), by "nitelength shell.
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assuming FluK gges shell theory [13]. The results are displayed versus non-dimensional
frequency u/u

ring
, where u

ring
is the ring frequency of the shell. In the calculations, a loss

factor of g"0)04 is assumed. Figure 15 depicts a case where the axial position for the
response is varied for a "xed circumferential angle of h"0, whereas Figure 16 refers to
a varied circumferential angle h for a "xed axial position. Above u/u

ring
"0)05, it is seen

that ¹esti produces meaningful results with respect to tendency and captures the major
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variation with frequency, including the region near ring frequency. Below u/u
ring

"0)05, ¹esti

deviates markedly from the complete solution.
The motion transmissibility of the shell was also re-calculated for other loss factors and

the results are displayed in Figure 17. With small losses, i.e., g"0)003, it is seen that the
discrepancy between ¹esti and ¹complete is large. For g"0)02, ¹esti begins to give
a reasonable estimation. In accordance with what was found for beams, this thus
demonstrate that the method works better for large losses.

6. CONCLUDING REMARKS

In the preceding sections, a method has been investigated by which the distribution of
vibration over generic structures is evaluated in an overall sense from models employing the
associated semi- or quarter-in"nite structures. Thereby, a semi-in"nite structure is used
when one-dimensional systems are considered while a quarter-in"nite structure is
substituted for two-dimensional ones such that primary wave re#ections are taken into
account.

The method is rigorously proven for elementary, one-dimensional systems such as rods,
or shafts and to be applicable for beams where near "elds explain the di!erence in peak and
trough magnitudes between the estimated and the complete motion transmissibilities. For
plates, the method can give valid estimations in the range where the modal overlap
bandwidth is much greater than the average interval between the eigen-frequencies. It is
also demonstrated that the method is applicable for damped cylindrical shells in a range
above u/u

ring
"0)05.
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APPENDIX A: AN APPROXIMATE EXPRESSION FOR THE TRANSVERSE
DISPLACEMENT OF PLATES EXCITED BY A CONCENTRATED FORCE

Consider the mode series expansion of the transverse displacement of simply supported
plates as given in equation (15). If the response point (x, y) is con"ned to the region x)x

p
,

y)y
p

and the abbreviations

k
mn
"Jk2

x,m
#k2

y,n
, h

mn
"tan~1 (k

y,n
/k

x,m
),

r
0
"J(x

p
!x)2#(y

p
!y)2, a

0
"sin~1M (y

p
!y)/r

0
N ,

r
1
"J(x

p
#x)2#(y

p
!y)2, a

1
"sin~1M(y

p
!y)/r

1
N,

r
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"J(x

p
!x)2#(y

p
#y)2, a

2
"sin~1M(y

p
#y)/r

2
N ,

r
3
"J(x

p
#x)2#(y

p
#y)2, a

3
"sin~1M(y

p
#y)/r

3
N, (A1)

are introduced where the distances r
i
and angles a

i
, i"0, 1, 2, 3 are illustrated geometrically

in Figure A.1, then equation (15) can be rewritten as

w (x, y, k)"
F

4DA

=
+

kmn/0

1

k4
mn
!k4

+
0)hmn

)2n
Me~+kmnr0#04(hmn~a0)!e~+kmnr1#04(hmn~a1)

!e~+kmnr2#04(hmn~a2)#e~+kmnr3#04(hmn~a3)N. (A2)

Following the approach outlined in section 3 and with reference to the graph of the mode
lattice of the plate in Figure A2, the mode grouping for each concentric ring-shaped band
Dk, which corresponds to a narrow frequency band as described in section 3, is
approximately given by

wDk
(k

l
)+

F

4DA

1

k4
l
!k4

+
0)hmn

)2n
Me~+kl r0#04(hmn~a0)!e~+kl r1#04(hmn~a1)

!e~+kl r2#04(hmn~a2)#e~+kl r3#04(hmn~a3)N, l"1, 2, 3,2 , (A3)

where k
l
, l"1, 2, 3,2 are the mean values of k

mn
in each ring-shaped band. Accordingly,

w(x, y, k) is obtained by summing wDk
(k

l
) over k

l
:

w(x, y, k)"+
kl

wDk
(k

l
), l"0, 1, 2, 3,2 (A4)



Figure A1. Geometry for r
i
and a

i
, i"0, 1, 2, 3.

Figure A2. Mode lattice for a rectangular plate.
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By assuming that the number of modes NDk
(k

l
), l"1, 2, 3, in each ring-shaped band is

su$ciently large such that the angular interval Dh
mn

between two modes is small on average,
the summation in equation (A3) can be approximated by an integral [3, 4], leading to

wDk
(k

l
)+

F/4DA

Dh
mn

(k4
l
!k4)P

2n

0
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0
(k

l
r
3
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-
!k4

"

nF

2DADh
mn

Q(k
l
)

k4
l
!k4

. (A5)
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Upon substituting equation (A5) into equation (A4),

w (x, y, k)+
nF

2DA

=
+
l/0

1

Dh
mn

Q(k
l
)

k4
l
!k4

for x)x
p
, y)y

p
. (A6)

From the lattice in Figure A2 the number of modes NDk
(k

l
) in the band Dk is found to be

NDk
(k

l
)"

2nk
l
Dk

(n/¸
x
) (n/¸

y
)
"k

l

2ADk

n
. (A7)

The averaged angular interval Dh
mn

is thus obtained as

Dh
mn
"

2n
NDk

(k
n
)
"

1

k
l
A

n2

Dk
(A8)

Substituting equation (A8) into (A6) yields

w (x, y, k)+
F

D

Dk

2n
=
+
l/0

k
l

k4
l
!k4

Q(k
l
) for x)x

p
, y)y

p
. (A9)

Making use of the relations 2J
0
(z)"H(2)

0
(z)#H(1)

0
(z), H(2)

0
(ze~*n)"!H(1)

0
(z) [18] and

evaluating the in"nite series by using a contour integral [7}9] gives

=
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k
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l
r
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(kr
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0
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, i"0, 1, 2, 3 (A10)

as is detailed in Appendix B. Accordingly,
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3
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p
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(A11)

where
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0
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APPENDIX B: EVALUATION OF AN INFINITE SERIES BY A CONTOUR INTEGRAL

Consider the sum

S"
=
+

n/~=

k
n
H(2)

0
(k

n
r)

k4
n
!k4

. (B1)



Figure B1. Integral contour C around real axis in v-plane.

Figure B2. Contour C
`

consisting of A
`

and B
`

, and the Contour C
~

consisting of A
~

and B
~
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Upon allowing for k to be complex, the summation S can be expressed as a contour integral
as [7}9]

=
+

n/~=

k
n
H(2)

0
(k

n
r)

k4
n
!k4

"

j

2 Q
C

cos(nv)k
v
H(2)

0
(k

v
r)

sin(vn)(k4
v
!k4)

dv (B2)

where C is the clockwise contour shown in Figure B1.
To proceed, the contour C is transformed into a contour C@, which contains only the poles

of (k4
v
!k4) [7]. For this purpose, a contour C

`
is formed in the upper half-plane,

and a similar contour C
~

in the lower plane. Each contour consists of a semicircle of
in"nite radius B

`
or B

~
at in"nity, and a line parallel to the real axis A

`
or A

~
, as shown in

Figure B2.
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The contour integrals are given by the residues at the poles of k
v
H(2)

0
(k

v
r)/(k4

v
!k4) in the

upper and lower half-plane, respectively, i.e.,

Q
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Since the integrals along the semicircles B
`

and B
~

vanish as the radius DvD tends to in"nity,
a summation of the two contour integrals gives

Q
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#Q
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"P
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#P
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. (B5)

This means that

Q
C
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#+
n
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n H . (B6)

The zeros of (k4
v
!k4) are found by solving for v the equation

(vDk)4!k4"0, (B7)

which gives

v
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2
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3
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4
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The poles v
2

and v
3

can be neglected because they make the point (x
p
, y

p
) a sink. Thus, the

residues at the pole v
1

and v
4

are
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Therefore,
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Because of k/DkA1, when the damping is not small, the following approximations hold:

tan(kn/Dk)+1, tan( jkn/Dk)+!1, (B12)
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and equation (B11) is simpli"ed to
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Therefore, the sum asymptotically approaches
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APPENDIX C: NOMENCLATURE

A"¸
x
¸
y

area of the plate
E Young's modulus
G shear modulus
H(2)

0
(z) zeroth order Hankel function of second kind

j"J!1
J
0
(z) zeroth order Bessel function

k
m,x

"mn/¸
x

eigenvalue of beam function
k
n,y

"nn/¸
y

eigenvalue of beam function
k
mn
"Jk2

m,x
#k2

n,y
k
l
, l"1, 2, 3,2 mean of k

mn
for the lth ring-shaped band

k
L
"uJo/E longitudinal wavenumber

k
T
"uJo/G shear wavenumber

k
f

#exural wavenumber
k
1,n

, k
2,n

, k
3,n

, k
4,n

four types of wavenumber of cylindrical shells for the nth
circumferential mode

¸
x

side length
¸
y

side length
n(u) modal density
R radius of cylindrical shells
NDk

(k
l
) mode count over a ring-shaped band Dk

¹
qp

motion transmissibility from point excitation at p to an arbitrary point q
wDk

(k
l
) mode grouping over a ring-shaped band of radius k

l
>
c

characteristic mobility
>
qp

transfer mobility from point p to q
du average of angular frequency interval between two modes
Du"gu modal overlap bandwidth
Dh

mn
averaged angular interval of the modes over ring-shaped band

o mass density
g loss factor
u
m
(x) eigenfunction

t
n
(y) eigenfunction

u angular frequency
u

ring
angular ring frequency of the shell
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